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1. INTRODUCTION AND PRELIMINARIES

The notion "filter" first appeared in F. Riesz [13] and the
setting of convergence in terms of filters was sketched by
H. Cartan in [5] and [6] and was developed by N. Bourbaki
in [4]. G. T. Whyburn in [15] introduces the notion directed
toward a set and the generalization of this notion is studied
in section 2. R. F. Dickman and J. R. Porter in [7] introduce
the notion almost convergence, J. R. Porter and J. R.
Thomas in [12] introduce the notion quasi-H-closed and the
analogues of this notions are studied in section 3. N. Levine
in [8] introduce the notion 6-continuous functions, D. R.
Andrew and E. K. Whittlesy in [2] introduce the notion
weakly 8-continuous functions, in [7] introduce the notions
0-compact functions, 0-rigid a set, almost closed functions
and the analogues of this notions are studied in section 4. In
[15] introduce the notion 6-perfect functions and the
analogue of this notion is studied in section 5. The
neighborhood denoted by nbd. The closure (resp. interior)
of a subset A of a space X denoted by CI(A) (resp. Int(A) ).
Definition 1.1. [4] A nonempty family 3 of nonempty
subsets of X is said to be filter if it satisfies the following
conditions:

@) IfFy, Fy e 3, then FiNF, € S,

(b) fFeJand Fc F*c X, then F* € G.

Definition 1.2. [4] A nonempty family 3 of nonempty
subsets of X is said to be filter base if F;, F, € I then F; <
F.NF, for some F; € .

The filter generated by a filter base 3 consists of all
supersets of elements of 3. An open filter base on a space X
is a filter base with open members. The set N, of all nbds
of x € X is a filter on X, and any nbd base at x is a filter
base for N,. This filter called the nbd filter at x.

Definition 1.3. [4] Let 3 be a filter base on a space X. We
say that 3 converges to x € X (written as 3 — X) iff each
open set U about x contains some element F € 3. We say 3
has x as a cluster point (or 5 cluster at x) iff each open set
U about x meets all element F € 3. Clear that if 3 — x,
then 3 cluster at x.

Definition 1.4. [4] Let 3 and G be filter bases on X. Then
G is said to be finer than I (written as 3 < G) if for all F
3, there is G e G such that G < F and that 3 meets G if
FNG = ¢ forall F € 3 and G € G. Notice, I — x iff N, <
3.

Definition 1.5. [15] Let I be a filter base on a space X. We
say that 3 directed toward (shortly, d-t) a set A < X,
provided each filter base finer than 3 has a cluster point in
A. (Note: Any filter base cann't be d-t the empty set).

Definition 1.6. [4] A filter T is said to be an ultrafilter if
there is no strictly finer filter G than 3. Thus the ultrafilter
are the maximal filters.

Definition 1.7. A subset A of a space X is said to be

(a) r-open [14] if A = Int(CI(A));

(b) pre-open [10] if A < Int(CI(A)).

(c) semi-open [9] if A < CI(Int(A)).

(d) b-open [3] if A < CI(Int(A))UInt(CI(A)).

(€) a-open [11] if A < Int(CI(Int(A))).

(F) B-open [1] if A < CI(Int(CI(A))).

The complement of an r-open (resp. pre-open, semi-open,

b-open, a-open, B-open) is said to be r-closed (resp. pre-

closed, semi-closed, b-closed, a-closed, B-closed).

The supra closure (briefly j-closure) of A < X is denoted by

CP(A) and defined by CH(A) = N{F < X; F is j-closed and A

c F}, where je{r, pre, semi, b, o, B}.

2. Filter Bases and Closure Directed Toward a Set

Lemma 2.1. [15] Let f: X — Y be an injective function.

(@) If 3 ={F:F < X}isafilter base in X, then f(3) = {f(F)
:F e 3} isafilter basein Y.

(b) If G = {G : G < f(X)} is a filter base in f(X), I = {f~
YG) : G e G} is a filter base in X. For each ¢ # A < X
and any filter base G in f(A), then {A N f(G) : G € G}
is a filter base in A.

(c) FI={F:FcX}isafilterbase in X, G={f(F): F €
3}, G* is finer than G, and 3* = {f }(G*) : G* € G*},
then the collection of sets 3** ={F N F*forall F € 3
and F* € 3*} is finer than both of 3 and 3*.

Now, we will generalizations Definitions (1.3) and (1.5) as

follows.

Definition 2.2. Let 3 be a filter base on a space X. We say

that 3 closure converges to X € X (written as 3 - X) iff all

open set U about x, the CI(U) contains some element F e

3. We say 3 has x as a closure cluster point (or 3 closure

cluster at x) iff all open set U about x the CI(U) meets all

element F € 3.

Clear that if 3wx, then 3 closure cluster at x. CI(,) is

used to denote the filter base {CI(U) : U € X,}. Notice,

Jwx iff CI(N,) < 3.

Definition 2.3. Let 3 be a filter base on a space X. We say

that 3 closure directed toward (shortly, cl-d-t) a set A < X,

provided each filter base finer than 3 has a closure cluster

point in A.

Theorem 2.4. Let 3 be a filter base on a space X. Iwx € X

iff 3 is cl-d-t x.
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Proof. (=) If 3w, all open set U about x, CI(U) contains
an element of 3 and thus contains an element of each filter
base 3* < 3, so that 3* actually closure converges to x.
(<) If 3 is cl-d-t x, it must Swx. For if not, there is an
open set U in X about x such that CI(U) don't contains an
element of 3. Denote by 3* the collection of sets F* = F N
(X = CI(U)) for F € 3, then the sets F* are nonempty. Also
3* is a filter base and indeed 3* < 3, because result in F;*
=F, N (X-CIU)) and Fo* = F, N (X — CI(U)), so there is
an F; < F; N F, and this lead to

F*=F; N (X-CI(U)) cF. N F, N (X=CI(U))

=F, N (X=CI(U)) N F, N (X=CI)).

By construction x is not a closure cluster point of 3*. This
contradiction yields that, Jwx.

Theorem 2.5. Let f : X —> Y be an injective function and
given B c V. If for each filter base G in f(X) cl-d-t a point y
e B, the inverse filter M = {f %(G) : G € G} is cl-d-t f (y),
then for any filter base 3 in f(X) cl-d-ta set B, E = {f '(F) :
F e 3}iscl-d-t A=f"(B).

Proof. Suppose that the hypothesis is true and any y € B
which is a closure cluster point of a filter base finer than 3
must be in f(X). Thus B N f(X) = ¢, also T is cl-d-t B N f(X).
Thus we may assume B < f(X). Let M be a filter base finer
than E. Then G = {f(M) : M € M } finer than 3 by Lemma
(3.1, a). Thus G has a closure cluster point z in B and a
filter base G* finer than G closure converges to z and thus
is cl-d-t z. By Assumption M* = {f }(G*) : G* € G*} is cl-
d-t f ). Also by Lemma (3.1, ¢), M and M* have a
common filter base M** finer than of them. Thus M** has
a closure cluster point x in f *(z). Because x is a closure
cluster point of M and x e f%(2) A, our result follows.
Theorem 2.6. A function f : X — Y is closed and f *(y)
compact for each y e Y iff for each filter base 3 in f(X) cl-
d—} aset B c Y, the collection E = {f *(F) : F € 3} is cl-d-t
f~(B).

Proof. (=) Assume that f is closed and f *(y) compact for
each y € Y. Then by Theorem (2.4) and (2.5) it suffices to
prove that if G is a filter base in f(X) closure converging to
y € B, then M = {f Y(G) : G € G} is cl-d-t f*(y). For if
not, there is a filter base M* finer than M, no point of f (y)
is a closure cluster point of M*. For all x e f(y), by

assumption there is an open set U, about x and M, ¢ M*
with M’ N U, = ¢. Since f *(y) is compact, there are a finite
numbers of open sets U, such that f'(y) c U =uU, .

Let M* € M* such that M* < NM’, and let V = Y — f(X —

U) be the open set. Then f(M*) N V = ¢ since M* < X —
CI(U). Thus since f(M*) e G*, G* cannot have y as a
closure cluster point.

(<) Suppose that the hypothesis is true and f is not closed.
Let A < X be a closed set and for somey € Y — f(A) is a
closure cluster point of f(A). Let G be a filter base of sets
f(A) NV for each open sets V < Y such thaty € V, then G is
a filter base in f(X) and G «» y. Let M = {f }(G) : G € G}
and M*={ANM:M e M} It clear that M* < M. But X —
A is open and f (y) € X — A, M* has no closure cluster
point in f *(y). This contradiction yields that f be a closed
function. Finally, to prove f *(y) is compact. This is easy
fory e Y — f(X). Also for y e f(X), {y} is a filter base in
f(X) cl-d-t y. By assumption, {f *(y)} cl-d-t f *(y). This

means that all filter base in f (y) has a closure cluster point

in fX(y), so that f *(y) is compact.

Corollary 2.7. A function f : X — Y is closed and f (y)

compact for each y e Y iff each filter base in f(X) »y e Y

has pre-image filter base cl-d-t f (y).

Corollary 2.8. If f : X — Y is closed and f *(y) compact

for each y e Y, for each compact set K < Y, f (K) is

compact.

Proof. Let K < Y be a compact set and 3 is a filter base in f

1K), G = {f(F) : F e 3}, is a filter base in K and in f(X)

and is cl-d-t K. Thus 3* = {f %(G) : G € G} is cl-d-t f*(K)

so that 3* < 3 and 3* has a closure cluster point in f *(K).

3. Filter Bases and Almost Supra Convergence

By analogue of definition almost convergence in [7] we

define.

Definition 3.1. Let 3 be a filter base on a space X. We say

3 almost supra converges (briefly almost j-converges) to a

subset A < X (written as Jw»A) if for each cover A of A by

subsets open in X, there is a finite subfamily B < A and F

e 3 such that F ¢ U{CF(B) : B € B}. We say J almost j-

converges to x € X (written as J=x) if I»{x}. Now,

CI(N,)wX, whereas, Clj(xx)jmx, where je{r, pre, semi, b,

o, B}

Also, we introduce the following definitions:

Definition 3.2. A point x € X is called an almost supra

cluster (briefly almost j-cluster) point of a filter base 3

(written as xealjcx3) if I meets CH(R,) , where je{r, pre,

semi, b, a, B}

For a set A < X, the almost j-closure of A, denoted as

aliCI(A) is alicx{A} if A = ¢ i.e. {x € X : every j-closed nbd

of x meets A} and is ¢ if A = ¢; A is almost j-closed if A =

aliCI(A). Correspondingly, the almost j-interior of A,

denoted as aljIntA, is {x € X ; CP(U) < A for some open set

U containing x}; A is almost j-interior if A = al;Int(A),

where je{r, pre, semi, b, o, B}.

Theorem 3.3. Let S and G be filter bases on a space X, A ¢

Xand x € X.

(a) If 3;»A, then CH(X,) < 3.

(b) If 3wx, iff CP(X,) < 3.

(c) If 3 <G, then alicxG < alicxS.

(d) If 3 <G and JwA, then GjwA.

(e) alicx3 = N{CI(F) : F e 3}.

(f) If Jjwx and x € A, then Jj=A.

(g) If SJ"W')A iff SJ*'W)A N alexj.

(h) If Jj=A, then A N aljcx3 = ¢.

(i) IfUc Xisopen, then al;CI(U) = CI(U).

() If 3 is a open filter base, then al;,CIJ = aljcxSJ.

(k) If U is an open ultrafilter on X, then Uwsx iff Ujwex.
Where je{r, pre, semi, b, o, B}.

Proof. The proof is easy, so it is omitted.

By analogue of definition quasi-H-closed relative in [12]

we define.

Definition 3.4. The subset A of a space X is said to be

quasi-supra H-closed (briefly quasi-jH-closed) relative to X

if every cover A of A by open subsets of X contains a finite

subfamily B < A such that A < U{CF(B) : B € B }. If X is

Hausdorff, we say that A is jH-closed relative to X. If X is

quasi-jH-closed relative to itself, then X is said to be quasi-

jH-closed (resp. jH-closed), where je{r, pre, semi, b, a, $}.

Theorem 3.5. The following are equivalent for a subset A

c X
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(a) Ais quasi-jH-closed relative to X.

(b) For all filter base 3 on A, Jj=A.

(c) For all filter base 3 on A, alicx3 N A = ¢. Where je{r,
pre, semi, b, a, B}

Proof. Clearly (a) = (b), and by Theorem (3.3, h), (b) =

(c).To show (c) = (a), let A be a cover of A by open

subsets of X such that the j-closed of the union of any finite

subfamily of A is not cover A. Then 3 = {A — Cly(UsUs) :

S is finite subfamily of A} is a filter base on A and aljcx3 N

A = ¢. This contradiction yields that A is quasi-H-closed

relative to X, where je{r, pre, semi, b, a, B}.

By concepts of closure directed toward a set and almost j-

convergence are characterized and related in the next result.

Theorem 3.6. Let 3 be a filter base on a space X and A ¢

X.

(@ Then 3 is cl-d-t A iff for all cover A of A by open
subsets of X, there is a finite subfamily B < A and an
Fe 3 such that F ¢ U{CI(B) : BeB}, where je {r,
pre, semi, b, a, B}.

(b) Then for every filter base G, I < G implies alicxG N A
# ¢ iff 3;=wA, where je {r, pre, semi, b, o, B}.

Proof. The proof of the two facts are similar; so, we will

only prove the fact (b):

(=) Suppose for every filter base G, 3 < G implies al;cxG

N A= ¢. If Jj=»x for some x € A, then by Theorem (3.3, ),

Jj#A. So, suppose that for every x € A, 3 does not jwx.

Let A be a cover of A by subsets open in X. For each x € A,

there is an open set U, containing x and V, € A such that U,

< Vi and F — Clix(U,) = ¢ for every F e 3. Thus, G, = {F —

Cly(U,) : F e 3} is a filter base on X and 3 < G,. Now, X ¢

alicxGy. Assume that U{G, : x € A} forms a filter subbase

with G denoting the generated filter. Then 3 < G and al;cxG

N A = ¢. This contradiction implies there is a finite subset

BcAand F, e 3 for x e B such that. ¢ = N{F, — Cly(U,) :

X € B}.There is F € 3 such that F < N{F,: x € B}. It

easily follows that ¢ = N{F — CPy(U,) : x € B} and F <

U{CIx(V,) : x € B}. Thus TmA.

(<) Suppose J;«»A and G is a filter base such that 3 < G.

By Theorem (3.3, d), GjwA, and Theorem (3.3, h), al;cxG

NA=#0o.

4. Filter Bases and Supra Rigidity

By analogues of definitions 8-continuous functions in [12]

and weakly 6-continuous functions in [8] we define.

Definition 4.1. A function f : X — Y is said to be j-closure

continuous (resp. j-weakly continuous) if for every x € X

and every nbd V of f(x), there exists a nbd U of x in X such

that f(CP(U)) < CB(V) (resp. f(U) = CH(V)). Clearly, every
continuous function is j-closure continuous, where je{pre,

semi, b, o, B}.

The notions of almost j-convergence and almost j-cluster

can be used to characterize j-closure continuous.

Theorem 4.2. Let f : X — Y be a function. The following

are equivalent:

(@) fis j-closure continuous.

(b) For all filter base I on X, J;wx implies f(3) — f(x).

(c) For all filter base 3 on X, f(alic3) < alic f(3J).

(d) For all open U c Y, f(U) c al;Intf *(al,CI(U)). Where
je{pre, semi, b, o, B}

Proof. The proof of the equivalence of (a), (b) and (d) is

straightforward.
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(@) = (c) Suppose 3 is a filter base on X, x € alic3, F € 3
and V is a nbd of f(x). There is a nbd U of x such that
f(CI(U)) < CP(V). Since CF(U) N F = ¢, then CP(V) N f(F)
# ¢. So, f(x) € alc f(3). This shows that f(al;c3) < aljc f(3).
(c) = (a) Let U be an ultrafilter containing f(CP(X,)). Now,
f (V) is a filter base since f(X) € U and f *(U) meets
CH(X,). So, f YU) U CH(X,) is contained in some
ultrafilter V. Now f f Y(U) is an ultrafilter base that
generates U. Since f f*(U) < f(V ), then f(V ) also generates
U; hence alicf(V ) = alicU. Since x € alic(V ), then f(x)
falicV ) < alic f(V ) = alicU. So, U meets ClP(N¢y) and
ClP(N¢x) < N{U : U ultrafilter, U o f(CF(Xy))}, (denote
this intersection by G). But G is the filter generated by
(CP(X,)) (see [4] Proposition 1.6.6); so CP(Nyy) <
f(CP(X,)). Hence f is j-closure continuous, where je{pre,
semi, b, a, B}
Corollary 4.3. If f : X — Y is j-closure continuous and A <
X, then f(al,CI(A)) < al,CI(f(A)), where je{pre, semi, b, o,
B}
Here are some similarly proven facts about j-weakly
continuous functions.
Theorem 4.4. Let f: X — Y be a function. The following
are equivalent:
(a) fis j-weakly continuous.
(b) For all filter base I on X, I — x implies f(3);wf(x).
(c) For all filter base 3 on X, f(alic3) c alic f(3J).
(d) For all open U c Y, f (U) < Intf *(CP(U)). Where
je{pre, semi, b, a, B}.
Theorem 4.5. If f : X — Y is j-weakly continuous, then
(a) Forall A c X, f(CP(A)) = al,Cl f(A).
(b) Forall B Y, f(CP(Int(Cl f* (B)))) = CF(B).
(c) For all open U c Y, f(CF(U)) < CPf (U). Where je
{pre, semi, b, a, B}.
By analogues of definitions 6-compact functions, 6-rigid a
set and almost closed in [7] we define.
Definition 4.6. A function f : X — Y is said to be supra
compact (briefly j-compact) if for every subset K quasi-H-
closed relative to Y, f *(K) is quasi-jH-closed relative to X,
where je {pre, semi, b, a, p}.
Definition 4.7. A subset A of a space X is said to be supra
rigid (briefly j-rigid) provided whenever 3 is a filter base
on X and A N alicx3 = ¢, there is an open U containing A
and F e J such that CF(U) N F = ¢, where je {pre, semi,
b, a, B}.
Definition 4.8. A function f : X — Y is said to be almost
supra closed (briefly almost j-closed) if for any set A X,
f(aliCI(A)) = al;,Cl f(A), where je {pre, semi, b, o, B}.
Definition 4.9. A space X is said to be supra Urysohn
(briefly j-Urysohn) if every pair of distinct points are
contained in disjoint j-closed nbds, where je{pre, semi, b,
o, B}-
Before characterizing j-rigidity, we show that a j-closure
continuous, j-compact function into a j-Urysohn space with
a certain property (the “j-closure” and “quasi-jH-closed
relative” analogue of property o in [15]) is almost j-closed.
Theorem 4.10. Suppose f: X — Y is a j-closure continuous
and j-compact and Y is j-Urysohn with this property: For
each B c Y and y € al;CI(B), there is a subset K quasi-H-
closed relative to Y such that y € al;CI(K N B). Then f is
almost j-closed, where je {pre, semi, b, a, B}.
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Proof. Let A < X. By corollary (4.3), f(alCI(A)) <
aliCIf(A). Suppose y € al,CIf(A). There is a subset K quasi-
jH-closed relative to Y such that y e al;CI(K N f(A)). Then
3 ={CPU) N KNFA): U e N}, is afilter base on Y such
that J;wy. Now, G = {A N f(F) : F e 3} is a filter base
on A N f7(K). Since f (K) is quasi-H-closed relative to X,
then there is x € alicxG N f (K). By theorem (4.2), f(x) €
alicyf(G) < aljcy3. Since Jjw»y and Y is j-Urysohn, alicy3 =
{y} Thus, y € f(al,CI(A)), where je {pre, semi, b, o, B}.
Theorem 4.11. Let A be a subset of a space X. The
following are equivalent:

(@) Aisj-rigid in X.

(b) For all filter base 3 on X, if A N aljcx3 = ¢, then for
some F € 3, A Nal,CI(F) = ¢.

(c) For all cover A of A by open subsets of X, there is a
finite subfamily B < A such that A < Int CP (UB ).
Where je {pre, semi, b, o, B}

Proof. The proof that (a) = (b) is straightforward. (b) =

(c) Let A be a cover of A by open subsets of X and 3 =

{Nues X - CH(U)) : B is a finite subset of A}. If 3 is nota

filter base, then for some finite subfamily B < A, X <

U{CI(U) : U e B}; thus, A = X < Int CF(UB) which

completes the proof in the case that J is not a filter base.

So, suppose J is a filter base. Then A N al;c3 = ¢ and there

is an F € 3 such that A N al;CI(F) = ¢. For each x € A,

there is open V, of x such that CF(V,) N F = ¢. LetV =

U{V, : X € A}. Now, V N F = ¢. Since F € 3, then for

some finite subfamily B < A, F = N{X — CHU) : U € B}.

It follows that V < CI(UB) and hence, A < Int CP(UB),

where je {pre, semi, b, a, B}.

(c) = (a) Let 3 be a filter base on X such that A N alic3 =

¢. For all x e A there is open V, of x and F, € 3 such that

CP(V,) N F, = ¢. Now {V, : x e A} is a cover of A by open

subsets of X; so, there is finite subset B < A such that A <

Int CH(U{V,c x € B}). Let U = Int CP(U{V, : x € B}).

There is F € 3 such that F < N{F,: x € B}. Since CP(U) =

U{CH(V,): x e B}, then CF(U) N F = ¢. Thus A is j-rigid in

X, where je {pre, semi, b, a, B}.

5. Filter Bases and Supra Perfect Functions

In Corollary (2.7) prove that a function f: X — Y is perfect

(i.e. closed and f (y) compact for each y e Y) iff for all

filter base I on f(X), Iwy e Y, implies f (3) is cl-d-t f

Y(y) and in Corollary (2.8) proved that a perfect function is

compact (i.e. inverse image of compact sets are compact).

In view Theorem (3.6), we say that a function f : X — Y is

supra perfect (briefly j-perfect) if for every filter base 3 on

f(X), Sy e Y implies f (3);»f (y), where je {pre,

semi, b, o, B}.

Theorem 5.1. Let f : X — Y be a function. The following

are equivalent:

(@) fis j-perfect.

(b) For all filter base 3 on X, aljc f(J) < f(al;c3).

(c) For all filter base 3 on f(X), 3wB < YV,
implies f (3);~f (B). Where je{pre, semi,

b, a, B}.

Proof. (a) = (b) Suppose J is a filter base on X and y e

alic f(3). For if not. Assume that fiy) N alic3 = ¢. For

each x e f(y), there is open U, of x and F, € 3 such that

CP(Uy) N Fy = ¢. Since f H(CP(N,));~f *(y) and {U,: x € f

“{(y)} is an open cover of f (y), there isa V e X, and a

finite subset B < f(y) such that f Y(CP(V)) = U{CP(U,) : x

e B}. Thereis an F € 3 such that F < N{F,: x € B}. Thus,
F N fYChV) = ¢ implying CB(V) N f(F) = ¢, a
contradiction as y e al;c f(3). This shows that y e f(alic 3),
Where je{pre, semi, b, a, B}
(b) = (c) Suppose 3 is a filter base on f(X) and J;«B Y.
Let G be a filter base on X such that f (3) < G. Then 3 <
f(G) and al;c f(G) N B = ¢. Hence f(alic G) N B # ¢ and aljc
G N f(B) # ¢. By Theorem (3.6, b), f (3);~f (B),
Where je{pre, semi, b, a, B}.
(c) = (a) Clearly.
Corollary 5.2. If f: X — Y is j-perfect, then:
(a) Forall Ac X, aliCIf(A) c f(al,CIA).
(b) For all almost j-closed A X, f(A) is almost j-closed.
(c) fis j-compact. Where je{pre, semi, b, o, B}
Proof. (a) Is an immediate consequence of Theorem (5.1),
and (b) follows easily from (a). To prove (c) Let K be
quasi-jH-closed relative to Y, and G be a filter base on f~
(K), then f(G) is a filter base on K. By Theorem (3.5),
alicf(G) N K # ¢ and by Theorem (5.1, b), alicG N fH(K) =
. By Theorem (3.5), f 1(K) is quasi-jH-closed relative to X,
where je{pre, semi, b, a, B}
Theorem 5.3. An j-closure continuous function f: X —> Y is
j-perfect iff
(a) fisalmost j-closed, and
(b) fY(y) j-rigid for each y € Y, where je {pre,

semi, b, a, B}
Proof. (=) If f is j-closure continuous and j-perfect, then
by Corollaries (5.2) and (4.3), f is almost j-closed. To show
f(y), fory e Y, is j-rigid, Let I be a filter base on X such
that f *(y) N alic3 = ¢. So, y ¢ f(al;c3) and by Theorem
(5.1, b), y ¢ alic f(3). There is open U of y and F € J such
that CP(U) N f(F) = ¢. Therefore, f *(CI(U)) N F = ¢. Since
f is j-closure continuous, then for any x e f (y), there is
open V of x such that CH(V) < f (CP(U)). So, f *(y) N
CIi(F) = ¢, where je {pre, semi, b, a, B}.
(<) Suppose a j-closure continuous function f satisfies (a)
and (b). Let 3 be a filter base on f(X) such that J3;wy. Let G
be a filter base on X such that f %(3) < G. So, 3 < f(G)
implying that y e alic f(G). So, for every G € G, y €
al,CIf(G) < f(al,CIG). Hence, f *(y) N al,CIG = ¢ for every
G e G.By (b), f (y) N alicG # ¢. By Theorem (5.1), f is j-
perfect, where je {pre, semi, b, a, B}.
Actually, in the proof of the converse of Theorem (5.3), we
have shown that property (a) of Theorem (5.3) can be
reduced to this statement: For each A < X, al,CIf(A) <
f(aliCIA); in fact, we have shown the next corollary (the
function is not necessarily j-closure continuous).
Corollary 5.4. Let f: X — Y. If (a) for all A c X, al,CIf(A)
c f(al,CIA) and (b) f(y) j-rigid for each y € Y, then fis j-
perfect, where je {pre, semi, b, a, B}.
Corollary 5.5. Let f: X —> Y. (a) f is almost j-closed, and
(b) f(y) j-rigid for each y € Y, then f * preserves j-rigidity,
where je {pre, semi, b, a, B}.
Proof. Let K < Y be j-rigid and 3 be a filter base on X such
that alicx3 N f (K) = ¢. By Corollary (5.4) and Theorem
(5.1), alicf(3) N K = ¢. So, there is F € 3 such that
al,CIf(F) N K = ¢. But al,CIf(F) = f(al,CIF). So, al,CI(F) N f
(K) = ¢. So, by Theorem (4.11), f (K) is j-rigid, where je
{pre, semi, b, o, B}.
Theorem 5.6. Suppose f: X — Y has j-rigid point-inverses.
Then:
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(@) fis j-closure continuous iff for each y € Y and open set
V containing y, there is an open set U containing f *(y)
such that f(CP(U)) < CB(V), where je {pre, semi, b, a,
B}

(b) If for each y € Y and open set U containing f’l_(y), there
is an open set V of y such that f (CP(V)) < CI(U), then
for each A < X, al;CI(f(A) < f(al,CI(A)), where je {pre,
semi, b, a, B}

Proof. (a) (=) Is obvious.

(<) Is straightforward using Theorem (4.11, c)

(b) Let 6 = A < X and y ¢ f(al,CI(A)). Then f *(y) N

aliCI(A) = ¢. Now, 3 = {A} is a filter base and al;c3 N -

Y(y) = ¢. So, there is open set U continuing f* (y) such that

CP(U) N A = ¢. There is open V of y such that f }(CP(V)) =

CI(U). So, CI(V) N f(A) = ¢. Hence y ¢ al,CIf(A), where je

{pre, semi, b, a, B}.

The next result is closely related to Theorem (5.6, b); the

proof is straightforward.

Theorem 5.7. Let f : X — Y. The following are equivalent:

(@) For all j-closed A < X, f(A) is j-closed, where je {pre,
semi, b, o, p}.

(b) For all B < Y and j-open U containing f *(B), there is j-
open V containing B such that f (V) < U, where je
{pre, semi, b, o, B}.

Theorem 5.8. If f : X — Y is j-closure continuous and Y is

j-Urysohn, then f is j-perfect iff for all filter base 3 on X, if

f(3)j»y € Y, then alicx3 = ¢, where je {pre, semi, b, a, B}.

Proof. (=) Suppose f is j-perfect and f(3)j»y. So, f~

(3)f (y). Since f (3) < 3, then by Theorem (3.3, d),

3;f(y), by Theorem (3.3, h), alic 3 # ¢.

(<) Suppose for every filter base I on X, if f(3);wy € Y,

then alicxJ # ¢. Suppose G is a filter base on f(X) such that

Gj»y € Y, and assume H is a filter base on X such that f~

Y(G) < H. Then G = ff {(G) < f(H). So, f(H);y. Hence,

alicxH = ¢. Let z € Y — {y}. Since Y is j-Urysohn, there are

open sets U, of z and U, of y such that CF(U,) N CF(U,) =
¢. There is H e H such that f(H) < CP(U,). For each x e f~

Y(2), there is open V, of x such that f(CP(V,)) < CI(U,). So,

CP(V) NH= d. It follows that f (z) N alickH = ¢ for each

zeY-{y} So, alicxH N fX(y) = ¢ and f is j-perfect, where

je {pre, semi, b, o, B}

Corollary 5.9. If f : X — Y is j-closure continuous, X is

quasi-jH-closed, and Y is j-Urysohn, then f is j-perfect,

where je{pre, semi, b, a, B}.

Proof. Since X is quasi-H-closed, then all filter base on X

has nonvoid almost j-cluster; now, the corollary follows

directly from Theorem (5.3), Where je{pre, semi, b, a, B}.
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