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1. INTRODUCTION AND PRELIMINARIES 

The notion "filter" first appeared in F. Riesz [13] and the 

setting of convergence in terms of filters was sketched by 

H. Cartan in [5] and [6] and was developed by N. Bourbaki 

in [4]. G. T. Whyburn in [15] introduces the notion directed 

toward a set and the generalization of this notion is studied 

in section 2. R. F. Dickman and J. R. Porter in [7] introduce 

the notion almost convergence, J. R. Porter and J. R. 

Thomas in [12] introduce the notion quasi-H-closed and the 

analogues of this notions are studied in section 3. N. Levine 

in [8] introduce the notion θ-continuous functions, D. R. 

Andrew and E. K. Whittlesy in [2] introduce the notion 

weakly θ-continuous functions, in [7] introduce the notions 

θ-compact functions, θ-rigid a set, almost closed functions 

and the analogues of this notions are studied in section 4. In 

[15] introduce the notion θ-perfect functions and the 

analogue of this notion is studied in section 5. The 

neighborhood denoted by nbd. The closure (resp. interior) 

of a subset A of a space X denoted by Cl(A) (resp. Int(A) ). 

Definition 1.1. [4] A nonempty family  of nonempty 

subsets of X is said to be filter if it satisfies the following 

conditions: 

(a) If F1, F2  , then F1∩F2  , 

(b) If F   and F  F*  X, then F*  . 

 Definition 1.2. [4] A nonempty family  of nonempty 

subsets of X is said to be filter base if F1, F2   then F3  

F1∩F2 for some F3  . 

The filter generated by a filter base  consists of all 

supersets of elements of . An open filter base on a space X 

is a filter base with open members. The set x of all nbds 

of x  X is a filter on X, and any nbd base at x is a filter 

base for x. This filter called the nbd filter at x. 

Definition 1.3. [4] Let  be a filter base on a space X. We 

say that  converges to x  X (written as   x) iff each 

open set U about x contains some element F  . We say  

has x as a cluster point (or  cluster at x) iff each open set 

U about x meets all element F  . Clear that if   x, 

then  cluster at x. 

Definition 1.4. [4] Let  and G be filter bases on X. Then 

G is said to be finer than  (written as  < G) if for all F  

, there is G  G such that G  F and that  meets G if 

F∩G   for all F   and G  G. Notice,   x iff x < 

. 

Definition 1.5. [15] Let  be a filter base on a space X. We 

say that  directed toward (shortly, d-t) a set A  X, 

provided each filter base finer than  has a cluster point in 

A. (Note: Any filter base cann't be d-t the empty set). 

Definition 1.6. [4] A filter  is said to be an ultrafilter if 

there is no strictly finer filter G than . Thus the ultrafilter 

are the maximal filters. 

Definition 1.7. A subset A of a space X is said to be  

(a)  r-open [14] if A = Int(Cl(A)); 

(b)  pre-open [10] if A  Int(Cl(A)). 

(c)  semi-open [9] if A  Cl(Int(A)). 

(d) b-open [3] if A  Cl(Int(A))Int(Cl(A)). 

(e) -open [11] if A  Int(Cl(Int(A))). 

(f) -open [1] if A  Cl(Int(Cl(A))). 

The complement of an r-open (resp. pre-open, semi-open, 

b-open, -open, -open) is said to be r-closed (resp. pre-

closed, semi-closed, b-closed, -closed, -closed).  

The supra closure (briefly j-closure) of A  X is denoted by 

Cl
j
(A) and defined by Cl

j
(A) = ∩{F  X; F is j-closed and A 

 F}, where j{r, pre, semi, b, , }. 

2. Filter Bases and Closure Directed Toward a Set 

Lemma 2.1. [15] Let f : X  Y be an injective function. 

(a) If  = {F : F  X} is a filter base in X, then f() = {f(F) 

: F  } is a filter base in Y. 

(b) If G = {G : G  f(X)} is a filter base in f(X),  = {f
 –

1
(G) : G  G} is a filter base in X. For each   A  X 

and any filter base G in f(A), then {A ∩ f
 –1

(G) : G  G} 

is a filter base in A. 

(c) If  = {F : F  X} is a filter base in X, G = {f(F) : F  

}, G* is finer than G, and * = {f
 –1

(G*) : G*  G*}, 

then the collection of sets ** = {F ∩ F* for all F   

and F*  *} is finer than both of  and *. 

Now, we will generalizations Definitions (1.3) and (1.5) as 

follows. 

Definition 2.2. Let  be a filter base on a space X. We say 

that  closure converges to x  X (written as  ⇝ x) iff all 

open set U about x, the Cl(U) contains some element F  

. We say  has x as a closure cluster point  (or  closure 

cluster at x) iff all open set U about x the Cl(U) meets all 

element F  . 

Clear that if ⇝x, then  closure cluster at x. Cl(x) is 

used to denote the filter base {Cl(U) : U  x}. Notice, 

⇝x iff  Cl(x) < . 

Definition 2.3. Let  be a filter base on a space X. We say 

that  closure directed toward (shortly, cl-d-t) a set A  X, 

provided each filter base finer than  has a closure cluster 

point in A. 

Theorem 2.4. Let  be a filter base on a space X. ⇝x  X 

iff  is cl-d-t x. 
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Proof. () If ⇝x, all open set U about x, Cl(U) contains 

an element of  and thus contains an element of each filter 

base * < , so that * actually closure converges to x. 

() If  is cl-d-t x, it must ⇝x. For if not, there is an 

open set U in X about x such that Cl(U) don't contains an 

element of . Denote by * the collection of sets F* = F ∩ 

(X  Cl(U)) for F  , then the sets F* are nonempty. Also 

* is a filter base and indeed * < , because result in F1* 

= F1 ∩ (X  Cl(U)) and F2* = F2 ∩ (X  Cl(U)), so there is 

an F3  F1 ∩ F2 and this lead to 

F3* = F3 ∩ (X  Cl(U))  F1 ∩ F2 ∩ (X  Cl(U))  

= F1 ∩ (X  Cl(U)) ∩ F2 ∩ (X  Cl(U)). 

By construction x is not a closure cluster point of *. This 

contradiction yields that, ⇝x. 

Theorem 2.5. Let f : X  Y be an injective function and 

given B  Y. If for each filter base G in f(X) cl-d-t a point y 

 B, the inverse filter M = {f
 –1

(G) : G  G} is cl-d-t f
 –1

(y), 

then for any filter base  in f(X) cl-d-t a set B, E = {f
 –1

(F) : 

F  } is cl-d-t A = f
 –1

(B). 

Proof. Suppose that the hypothesis is true and any y  B 

which is a closure cluster point of a filter base finer than  

must be in f(X). Thus B ∩ f(X)  , also  is cl-d-t B ∩ f(X). 

Thus we may assume B  f(X). Let M be a filter base finer 

than E. Then G = {f(M) : M  M } finer than  by Lemma 

(3.1, a). Thus G has a closure cluster point z in B and a 

filter base G* finer than G closure converges to z and thus 

is cl-d-t z. By Assumption M* = {f
 –1

(G*) : G*  G*} is cl-

d-t  f
 –1

(z). Also by Lemma (3.1, c), M and M* have a 

common filter base M** finer than of them. Thus M** has 

a closure  cluster  point x in f
 –1

(z). Because  x is a closure 

cluster point of M and x  f
 –1

(z)  A, our result follows. 

Theorem 2.6. A function f : X  Y is closed and f
 –1

(y) 

compact for each y  Y iff for each filter base  in f(X) cl-

d-t a set B  Y, the collection E = {f
 –1

(F) : F  } is cl-d-t 

f
 –1

(B). 

Proof. () Assume that f is closed and f
 –1

(y) compact for 

each y  Y. Then by Theorem (2.4) and (2.5) it suffices to 

prove that if G is a filter base in f(X) closure converging to 

y  B, then M = {f
 –1

(G) : G  G} is cl-d-t  f
 –1

(y). For if 

not, there is a filter base M* finer than M, no point of f
 –1

(y) 

is a closure cluster point of M*. For all x  f
 –1

(y), by 

assumption there is an open set Ux about x and M *
x  M* 

with M *
x ∩ Ux = . Since f

 –1
(y) is compact, there are a finite 

numbers of open sets U
ix  such that  f

 –1
(y)  U = U

ix . 

Let M*  M* such that M*  ∩M *

ix  and let V = Y  f(X  

U) be the open set. Then f(M*) ∩ V =  since M*  X  

Cl(U). Thus since f(M*)  G*, G* cannot have y as a 

closure cluster point. 

() Suppose that the hypothesis is true and  f  is not closed. 

Let A  X be a closed set and for some y  Y  f(A) is a 

closure cluster point of f(A). Let G be a filter base of sets 

f(A) ∩ V for each open sets V  Y such that y  V, then G is 

a filter base in f(X) and G ⇝ y. Let M = {f
 –1

(G) : G  G} 

and M* = {A ∩ M : M  M}. It clear that M* < M. But X  

A is open and f
 –1

(y)  X  A, M* has no closure cluster 

point in f
 –1

(y). This contradiction yields that f be a closed 

function. Finally, to prove f
 –1

(y) is compact. This is easy 

for y  Y  f(X). Also for y  f(X), {y} is a filter base in  

f(X) cl-d-t  y. By assumption, {f
 –1

(y)} cl-d-t  f
 –1

(y). This 

means that all filter base in f
 –1

(y) has a closure cluster point 

in f
 –1

(y), so that f
 –1

(y) is compact. 

Corollary 2.7. A function f : X  Y is closed and f
 –1

(y) 

compact for each y  Y iff each filter base in f(X) ⇝ y  Y 

has pre-image filter base cl-d-t f
 –1

(y). 

Corollary 2.8. If f : X  Y is closed and f
 –1

(y) compact 

for each y  Y, for each compact set K  Y,  f
 –1

(K) is 

compact. 

Proof. Let K  Y be a compact set and  is a filter base in f
 

–1
(K), G = {f(F) : F  }, is a filter base in K and in f(X) 

and is cl-d-t K. Thus * = {f
 –1

(G) : G  G} is cl-d-t  f
 –1

(K) 

so that * <  and * has a closure cluster point in f
 –1

(K). 

3. Filter Bases and Almost Supra Convergence 
By analogue of definition almost convergence in [7] we 

define. 

Definition 3.1. Let  be a filter base on a space X. We say 

 almost supra converges (briefly almost j-converges) to a 

subset A  X (written as j⇝A) if for each cover A of A by 

subsets open in X, there is a finite subfamily B  A and F 

  such that F  {Cl
j
(B) : B  B}. We say  almost j-

converges to x  X (written as j⇝x) if j⇝{x}. Now, 

Cl(x)⇝x, whereas, Cl
j
(x)j⇝x, where j{r, pre, semi, b, 

, }. 

Also, we introduce the following definitions: 

Definition 3.2. A point x  X is called an almost supra 

cluster (briefly almost j-cluster) point of a filter base  

(written as xaljcX) if  meets Cl
j
(x) , where j{r, pre, 

semi, b, , }. 

For a set A  X, the almost j-closure of A, denoted as 

aljCl(A) is aljcX{A} if A   i.e. {x  X : every j-closed nbd 

of x meets A} and is  if A = ; A is almost j-closed if A = 

aljCl(A). Correspondingly, the almost j-interior of A, 

denoted as aljIntA, is {x  X ; Cl
j
(U)  A for some open set 

U containing x}; A is almost j-interior if A = aljInt(A), 

where j{r, pre, semi, b, , }. 

Theorem 3.3. Let 
 
and G be filter bases on a space X, A  

X and x  X. 

(a) If j⇝A, then Cl
j
(A) < . 

(b) If j⇝x, iff Cl
j
(x) < . 

(c) If  < G, then aljcXG  aljcX. 

(d) If  < G
 
and j⇝A, then Gj⇝A. 

(e) aljcX = ∩{Cl
j
(F) : F  }. 

(f) If j⇝x and x  A, then j⇝A. 

(g) If j⇝A iff j⇝A ∩ aljcX. 

(h) If j⇝A, then A ∩ aljcX  . 

(i) If U  X is open, then aljCl(U) = Cl(U). 

(j) If  is a open filter base, then aljCl = aljcX. 

(k) If U is an open ultrafilter on X, then U⇝x iff Uj⇝x. 

Where j{r, pre, semi, b, , }. 

Proof. The proof is easy, so it is omitted. 

By analogue of definition quasi-H-closed relative in [12] 

we define. 

Definition 3.4. The subset A of a space X is said to be 

quasi-supra H-closed (briefly quasi-jH-closed) relative to X 

if every cover A of A by open subsets of X contains a finite 

subfamily B  A such that A  {Cl
j
(B) : B  B }. If X is 

Hausdorff, we say that A is jH-closed relative to X. If X is 

quasi-jH-closed relative to itself, then X is said to be quasi-

jH-closed (resp. jH-closed), where j{r, pre, semi, b, , }. 

Theorem 3.5. The following are equivalent for a subset A 

 X: 
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(a) A is quasi-jH-closed relative to X. 

(b) For all filter base  on A, j⇝A. 

(c) For all filter base  on A, aljcX ∩ A  . Where j{r, 

pre, semi, b, , } 

Proof. Clearly (a)  (b), and by Theorem (3.3, h), (b)  

(c).To show (c)  (a), let A be a cover of A by open 

subsets of X such that the j-closed of the union of any finite 

subfamily of A is not cover A. Then  = {A  Cl
j
X(SUs) : 

S is finite subfamily of A} is a filter base on A and aljcX ∩ 

A = . This contradiction yields that A is quasi-jH-closed 

relative to X, where j{r, pre, semi, b, , }. 

By concepts of closure directed toward a set and almost j-

convergence are characterized and related in the next result. 

Theorem 3.6. Let 
 
be a filter base on a space X and A  

X. 

(a) Then 
 
is cl-d-t A iff for all cover A of A by open 

subsets of X, there is a finite subfamily B  A and an 

F  such that F  {Cl
j
(B) : BB}, where j {r, 

pre, semi, b, , }. 

(b) Then for every filter base G,  < G implies aljcXG ∩ A 

  iff j⇝A, where j {r, pre, semi, b, , }. 

Proof. The proof of the two facts are similar; so, we will 

only prove the fact (b): 

() Suppose for every filter base G,  < G implies aljcXG 

∩ A  . If j⇝x for some x  A, then by Theorem (3.3, f), 

j⇝A. So, suppose that for every x  A,  does not j⇝x. 

Let A be a cover of A by subsets open in X. For each x  A, 

there is an open set Ux containing x and Vx  A such that Ux 

 Vx and F  Cl
j
X(Ux)   for every F  . Thus, Gx = {F  

Cl
j
X(Ux) : F  } is a filter base on X and  < Gx. Now, x  

aljcXGx. Assume that {Gx : x  A} forms a filter subbase 

with G denoting the generated filter. Then  < G and aljcXG 

∩ A = . This contradiction implies there is a finite subset 

B  A and Fx   for x  B such that.  = ∩{Fx  Cl
j
X(Ux) : 

x  B}.There is F   such that F  ∩{Fx : x  B}. It 

easily follows that  = ∩{F  Cl
j
X(Ux) : x  B} and F  

{Cl
j
X(Vx) : x  B}. Thus j⇝A. 

() Suppose j⇝A and G is a filter base such that  < G. 

By Theorem (3.3, d), Gj⇝A, and Theorem (3.3, h), aljcXG 

∩ A  . 

4. Filter Bases and Supra Rigidity 

By analogues of definitions -continuous functions in [12] 

and weakly -continuous functions in [8] we define. 

Definition 4.1. A function f : X  Y is said to be j-closure 

continuous (resp. j-weakly continuous) if for every x  X 

and every nbd V of f(x), there exists a nbd U of x in X such 

that f(Cl
j
(U))  Cl

j
(V) (resp. f(U)  Cl

j
(V)). Clearly, every 

continuous function is j-closure continuous, where j{pre, 

semi, b, , }. 

The notions of almost j-convergence and almost j-cluster 

can be used to characterize j-closure continuous. 

Theorem 4.2. Let f : X  Y be a function. The following 

are equivalent: 

(a) f is j-closure continuous. 

(b) For all filter base  on X, j⇝x implies f()  f(x). 

(c) For all filter base  on X, f(aljc)  aljc f(). 

(d) For all open U  Y, f
 –1

(U)  aljIntf
 –1

(aljCl(U)). Where 

j{pre, semi, b, , } 

Proof. The proof of the equivalence of (a), (b) and (d) is 

straightforward. 

(a)  (c) Suppose 
 
is a filter base on X, x  aljc, F   

and V is a nbd of f(x). There is a nbd U of x such that 

f(Cl
j
(U))  Cl

j
(V). Since Cl

j
(U) ∩ F  , then Cl

j
(V) ∩ f(F) 

 . So, f(x)  aljc f(). This shows that f(aljc)  aljc f(). 

(c)  (a) Let U be an ultrafilter containing f(Cl
j
(x)). Now, 

f
 –1

(U) is a filter base since f(X)  U and f
 –1

(U) meets 

Cl
j
(x). So, f

 –1
(U)  Cl

j
(x) is contained in some  

ultrafilter V. Now f f
 –1

(U) is an ultrafilter base that 

generates U. Since f f
 –1

(U) < f(V ), then f(V ) also generates 

U; hence aljcf(V ) = aljcU. Since x  aljc(V ), then f(x)  

f(aljcV )  aljc f(V ) = aljcU. So, U meets Cl
j
(f(x)) and 

Cl
j
(f(x))  ∩{U : U ultrafilter, U  f(Cl

j
(x))}, (denote 

this intersection by G). But G is the filter generated by 

(Cl
j
(x)) (see [4] Proposition I.6.6); so Cl

j
(f(x)) < 

f(Cl
j
(x)). Hence f is j-closure continuous, where j{pre, 

semi, b, , }. 

Corollary 4.3. If f : X  Y is j-closure continuous and A  

X, then f(aljCl(A))  aljCl(f(A)), where j{pre, semi, b, , 

}. 

Here are some similarly proven facts about j-weakly 

continuous functions. 

Theorem 4.4. Let f : X  Y be a function. The following 

are equivalent: 

(a) f is j-weakly continuous. 

(b) For all filter base  on X,   x implies f()j⇝f(x). 

(c) For all filter base  on X, f(aljc)  aljc f(). 

(d) For all open U  Y, f
 –1

(U)  Int f
 –1

(Cl
j
(U)). Where 

j{pre, semi, b, , }. 

Theorem 4.5. If f : X  Y is j-weakly continuous, then 

(a) For all A  X, f(Cl
j
(A))  aljCl f(A). 

(b) For all B  Y, f(Cl
j
(Int(Cl

j
 f

 –1
 (B))))  Cl

j
(B). 

(c) For all open U  Y, f
 
(Cl

j
(U))  Cl

j
f
 
(U). Where j 

{pre, semi, b, , }. 

By analogues of definitions -compact functions, -rigid a 

set and almost closed in [7] we define. 

Definition 4.6. A function f : X  Y is said to be supra 

compact (briefly j-compact) if for every subset K quasi-jH-

closed relative to Y, f
 –1

(K) is quasi-jH-closed relative to X, 

where j {pre, semi, b, , }. 

Definition 4.7. A subset A of a space X is said to be supra 

rigid (briefly j-rigid) provided whenever 
 
is a filter base 

on X and A ∩ aljcX = , there is an open U containing A 

and F   such that Cl
j
(U) ∩ F = , where j {pre, semi, 

b, , }. 

Definition 4.8. A function f : X  Y is said to be almost 

supra closed (briefly almost j-closed) if for any set A  X, 

f(aljCl(A)) = aljCl f(A), where j {pre, semi, b, , }. 

Definition 4.9. A space X is said to be supra Urysohn 

(briefly j-Urysohn) if every pair of distinct points are 

contained in disjoint j-closed nbds, where j{pre, semi, b, 

, }. 

Before characterizing j-rigidity, we show that a j-closure 

continuous, j-compact function into a j-Urysohn space with 

a certain property (the “j-closure” and “quasi-jH-closed 

relative” analogue of property  in [15]) is almost j-closed. 

Theorem 4.10. Suppose f : X  Y is a j-closure continuous 

and j-compact and Y is j-Urysohn with this property: For 

each B  Y and y  aljCl(B), there is a subset K quasi-jH-

closed relative to Y such that y  aljCl(K ∩ B). Then f is 

almost j-closed, where j {pre, semi, b, , }. 
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Proof. Let A  X. By corollary (4.3), f(aljCl(A))  

aljClf(A). Suppose y  aljClf(A). There is a subset K quasi-

jH-closed relative to Y such that y  aljCl(K ∩ f(A)). Then 

 = {Cl
j
(U) ∩ K ∩ f(A) : U  y}, is a filter base on Y such 

that j⇝y. Now, G = {A ∩ f
 –1

(F) : F  } is a filter base 

on A ∩ f
 –1

(K). Since f
 –1

(K) is quasi-jH-closed relative to X, 

then there is x  aljcXG ∩ f
 –1

(K). By theorem (4.2), f(x)  

aljcYf(G)  aljcY. Since j⇝y and Y is j-Urysohn, aljcY = 

{y}. Thus, y  f(aljCl(A)), where j {pre, semi, b, , }. 

Theorem 4.11. Let A be a subset of a space X. The 

following are equivalent: 

(a) A is j-rigid in X. 

(b) For all filter base  on X, if A ∩ aljcX = , then for 

some F  , A ∩ aljCl(F) = . 

(c) For all cover A of A by open subsets of X, there is a 

finite subfamily B  A such that A  Int Cl
j
 (B ). 

Where j {pre, semi, b, , }. 

Proof. The proof that (a)  (b) is straightforward. (b)  

(c) Let A be a cover of A by open subsets of X and  = 

{∩U B (X  Cl
j
(U)) : B is a finite subset of A}. If  is not a 

filter base, then for some finite subfamily B  A, X  

{Cl
j
(U) : U  B}; thus, A  X  Int Cl

j
(B) which 

completes the proof in the case that  is not a filter base. 

So, suppose  is a filter base. Then A ∩ aljc =  and there 

is an F   such that A ∩ aljCl(F) = . For each x  A, 

there is open Vx of x such that Cl
j
(Vx) ∩ F = . Let V = 

{Vx : x  A}. Now, V ∩ F = . Since F  , then for 

some finite subfamily B  A, F = ∩{X  Cl
j
(U) : U  B}. 

It follows that V  Cl
j
(B) and hence, A  Int Cl

j
(B), 

where j {pre, semi, b, , }. 

(c)  (a) Let  be a filter base on X such that A ∩ aljc = 

. For all x  A there is open Vx of x and Fx   such that 

Cl
j
(Vx) ∩ Fx = . Now {Vx : x  A} is a cover of A by open 

subsets of X; so, there is finite subset B  A such that A  

Int Cl
j
({Vx: x  B}). Let U = Int Cl

j
({Vx : x  B}). 

There is F   such that F  ∩{Fx : x  B}. Since Cl
j
(U) = 

{Cl
j
(Vx): x  B}, then Cl

j
(U) ∩ F = . Thus A is j-rigid in 

X, where j {pre, semi, b, , }. 

5. Filter Bases and Supra Perfect Functions 

In Corollary (2.7) prove that a function f : X  Y is perfect 

(i.e. closed and f
 –1

(y) compact for each y  Y) iff for all 

filter base  on f(X), ⇝y  Y, implies f
 –1

() is cl-d-t f
 –

1
(y) and in Corollary (2.8) proved that a perfect function is 

compact (i.e. inverse image of compact sets are compact). 

In view Theorem (3.6), we say that a function f : X  Y is 

supra perfect (briefly j-perfect) if for every filter base  on 

f(X), j⇝y  Y  implies f
 –1

()j⇝f
 –1

(y), where j {pre, 

semi, b, , }. 

Theorem 5.1. Let f : X  Y be a function. The following 

are equivalent: 

(a) f is j-perfect. 

(b) For all filter base  on X, aljc f()  f(aljc). 

(c) For all filter base  on f(X), j⇝B  Y, 

implies f
 –1

()j⇝f
 –1

(B). Where j{pre, semi, 

b, , }. 

Proof. (a)  (b) Suppose 
 
is a filter base on X and y  

aljc f(). For if not. Assume that f
 –1

(y) ∩ aljc = . For 

each x  f
 –1

(y), there is open Ux of x and Fx  
 
such that 

Cl
j
(Ux) ∩ Fx = . Since f

 –1
(Cl

j
(y))j⇝f

 –1
(y) and {Ux : x  f

 

–1
(y)} is an open cover of f

 –1
(y), there is a V  y and a 

finite subset B  f
 –1

(y) such that f
 –1

(Cl
j
(V))  {Cl

j
(Ux) : x 

 B}. There is an F   such that F  ∩{Fx : x  B}. Thus, 

F ∩ f
 –1

(Cl
j
(V)) =  implying Cl

j
(V) ∩ f(F) = , a 

contradiction as y  aljc f(). This shows that y  f(aljc ), 

Where j{pre, semi, b, , }. 

(b)  (c) Suppose 
 
is a filter base on f(X) and j⇝B  Y. 

Let G  be a filter base on X such that f
 –1

() < G. Then  < 

f(G) and aljc f(G) ∩ B  . Hence f(aljc G) ∩ B   and aljc 

G ∩ f
 –1

(B)  . By Theorem (3.6, b), f
 –1

()j⇝f
 –1

(B), 

Where j{pre, semi, b, , }. 

(c)  (a) Clearly. 

Corollary 5.2. If f : X  Y is j-perfect, then: 

(a) For all A  X, aljClf(A)  f(aljClA). 

(b) For all almost j-closed A  X, f(A)  is almost j-closed. 

(c) f is j-compact. Where j{pre, semi, b, , }. 

Proof. (a) Is an immediate consequence of Theorem (5.1), 

and (b) follows easily from (a). To prove (c) Let K be 

quasi-jH-closed relative to Y, and G
 
be a filter base on f

 –

1
(K), then f(G) is a filter base on K. By Theorem (3.5), 

aljcf(G) ∩ K   and by  Theorem (5.1, b), aljcG ∩ f
 –1

(K)  

. By Theorem (3.5), f
 –1

(K) is quasi-jH-closed relative to X, 

where j{pre, semi, b, , }. 

Theorem 5.3. An j-closure continuous function f : X  Y is 

j-perfect iff  

(a) f is almost j-closed, and 

(b) f
 –1

(y) j-rigid for each y  Y, where j {pre, 

semi, b, , }. 

Proof. () If f is j-closure continuous and j-perfect, then 

by Corollaries (5.2) and (4.3), f is almost j-closed. To show 

f
 –1

(y), for y  Y, is j-rigid, Let  be a filter base on X such 

that f
 –1

(y) ∩ aljc = . So, y  f(aljc) and by Theorem 

(5.1, b), y  aljc f(). There is open U of y and F   such 

that Cl
j
(U) ∩ f(F) = . Therefore, f

 –1
(Cl

j
(U)) ∩ F = . Since 

f is j-closure continuous, then for any x  f
 –1

(y), there is 

open V of x such that Cl
j
(V)  f

 –1
(Cl

j
(U)).  So, f

 –1
(y) ∩ 

Clj(F) = , where j {pre, semi, b, , }. 

() Suppose a j-closure continuous function f satisfies (a) 

and (b). Let  be a filter base on f(X) such that j⇝y. Let G 

be a filter base on X such  that f
 –1

() < G. So,  < f(G) 

implying that y  aljc f(G). So, for every G  G, y  

aljClf(G)  f(aljClG). Hence, f
 –1

(y) ∩ aljClG   for every 

G  G. By (b), f
 –1

(y) ∩ aljcG  . By Theorem (5.1), f is j-

perfect, where j {pre, semi, b, , }. 

Actually, in the proof of the converse of Theorem (5.3), we 

have shown that property (a) of Theorem (5.3) can be 

reduced to this statement: For each A  X, aljClf(A)  

f(aljClA); in fact, we have shown the next corollary (the 

function is not necessarily j-closure continuous). 

Corollary 5.4. Let f : X  Y. If (a) for all A  X, aljClf(A) 

 f(aljClA) and (b) f
 –1

(y) j-rigid for each y  Y, then  f is j-

perfect, where j {pre, semi, b, , }. 

Corollary 5.5. Let f : X  Y. (a) f is almost j-closed, and 

(b) f
 –1

(y) j-rigid for each y  Y, then f
 –1

 preserves j-rigidity, 

where j {pre, semi, b, , }. 

Proof. Let K  Y be j-rigid and  be a filter base on X such  

that  aljcX ∩ f
 –1

(K) = . By Corollary (5.4) and Theorem 

(5.1), aljcf() ∩ K = . So, there is F   such that 

aljClf(F) ∩ K = . But aljClf(F) = f(aljClF). So, aljCl(F) ∩ f
 

–1
(K) = . So, by Theorem (4.11), f

 –1
(K) is j-rigid, where j 

{pre, semi, b, , }. 

Theorem 5.6. Suppose f : X  Y has j-rigid point-inverses. 

Then: 
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(a) f is j-closure continuous iff for each y  Y and open set 

V containing y, there is an open set U containing f
 –1

(y) 

such that f(Cl
j
(U))  Cl

j
(V), where j {pre, semi, b, , 

}. 

(b) If for each y  Y and open set U containing f
 –1

(y), there 

is an open set V of y such that f
 –1

(Cl
j
(V))  Cl

j
(U), then 

for each A  X, aljCl(f(A)  f(aljCl(A)), where j {pre, 

semi, b, , }. 

Proof. (a) () Is obvious. 

() Is straightforward using Theorem (4.11, c) 

(b) Let   A  X and y  f(aljCl(A)). Then f
 –1

(y) ∩ 

aljCl(A) = . Now,  = {A} is a filter base and aljc ∩ f
 –

1
(y) = . So, there is open set U continuing f

 –1
 (y) such that 

Cl
j
(U) ∩ A = . There is open V of y such that f

 –1
(Cl

j
(V))  

Cl
j
(U). So, Cl

j
(V) ∩ f(A) = . Hence y  aljClf(A), where j 

{pre, semi, b, , }. 

The next result is closely related to Theorem (5.6, b); the 

proof is straightforward. 

Theorem 5.7. Let f : X  Y. The following are equivalent: 

(a) For all j-closed A  X, f(A) is j-closed, where j {pre, 

semi, b, , }. 

(b) For all B  Y and j-open U containing f
 –1

(B), there is j-

open V containing B such that f
 –1

(V)  U, where j 

{pre, semi, b, , }. 

Theorem 5.8. If f : X  Y is j-closure continuous and Y is 

j-Urysohn, then f is j-perfect iff for all filter base  on X, if 

f()j⇝y  Y, then aljcX  , where j {pre, semi, b, , }. 

Proof. () Suppose f is j-perfect and f()j⇝y. So,  f
 –

1
f()j⇝f

 –1
(y).  Since f

 –1
f() < , then by Theorem ( 3.3, d), 

j⇝f
 –1

(y), by Theorem (3.3, h), aljc   . 

() Suppose for every filter base  on X, if f()j⇝y  Y, 

then aljcX  . Suppose G is a filter base on f(X) such that 

Gj⇝y  Y, and assume H  is a filter base on X such that f
 –

1
(G) < H. Then G = ff

 –1
(G) < f(H). So, f(H)j⇝y. Hence, 

aljcXH  . Let z  Y  {y}. Since Y is j-Urysohn, there are 

open sets Uz of z and Uy of y such that Cl
j
(Uz) ∩ Cl

j
(Uy) = 

. There is H  H such that f(H)  Cl
j
(Uy). For each x  f

 –

1
(z), there is open Vx of x such that f(Cl

j
(Vx))  Cl

j
(Uz). So, 

Cl
j
(Vx) ∩ H = . It follows that f

 –1
(z) ∩ aljcXH  =  for each 

z  Y  {y}. So, aljcXH ∩ f
 –1

(y)   and f is j-perfect, where 

j {pre, semi, b, , }. 

Corollary 5.9. If f : X  Y is j-closure continuous, X is 

quasi-jH-closed, and Y is j-Urysohn, then f is j-perfect, 

where j{pre, semi, b, , }. 

Proof. Since X is quasi-jH-closed, then all filter base on X 

has nonvoid almost j-cluster; now, the corollary follows 

directly from Theorem (5.3), Where j{pre, semi, b, , }. 
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